

230735 – HIGH-LEVEL DIGITAL DESIGN

Credits: 5 ECTS

LECTURER

Coordinating lecturer: Juan Manuel Moreno Aróstegui

Others: Jordi Madrenas Boadas

PRIOR SKILLS

- Digital design based on an RTL-level hardware description language (VHDL, Verilog, ...)
- Design and simulation of basic digital systems: combinational and sequential logic functions, arithmetic functions and finite state machines.
- Implementation and debugging of basic digital systems on configurable devices (FPGAs).
- Development of software applications based on a microprocessor/microcontroller.
- C programming language.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

- Analyze, design and implement hardware/software communication interfaces.
- Specify and develop information processing systems using hardware/software co-design techniques.
- Design and implement digital systems based on embedded systems (SOC) configurable with high-level description languages and CAE tools.

Transversal:

TEAMWORK. Being able to work as a member of an interdisciplinary team, either as a member or carrying out management tasks, in order to contribute to developing projects with pragmatism and a sense of responsibility, assuming commitments taking into account the available resources.

TEACHING METHODOLOGY

- Lectures
- Laboratory classes
- Laboratory practical work
- Individual work (distance)
- Extended answer test (Final Exam)

LEARNING OBJECTIVES OF THE SUBJECT

Learning results of the subject:

- Understand the implications of hardware/software co-design and the use of configurable integrated systems (SOC).
- Design and implement communication interfaces between programmable subsystems (microprocessor/microcontroller) and configurable subsystems (FPGAs).
- Understand the high-level design principles of digital systems based on programmable and configurable components.
- Design and implement, using high-level design languages and techniques, digital communication and information processing systems.

STUDY LOAD

Hours large group: 26

Hours small group: 13

Hours self study: 86

CONTENTS

1. Introduction

- 1.1. Principles of hardware/software codesign
- 1.2. High-level synthesis methodology
- 1.3. Design optimization principles
- 1.4. High-level hardware description languages
- 1.5. Architectures of configurable integrated systems

Full-or-part-time: 4 h.

Theory classes: 2 h.

Self study: 2 h.

2. High-level hardware description languages

- 2.1. SystemC hardware description language
 - 2.1.1. Functional modeling
 - 2.1.2. Interfaces and channels design
 - 2.1.3. Transaction-level modeling
 - 2.1.4. Verification and debugging
- 2.2. SystemVerilog hardware description language
 - 2.2.1. Data types
 - 2.2.2. Procedural blocks, tasks and functions
 - 2.2.3. Interfaces
 - 2.2.4. System verification primitives
 - 2.2.5. Object-oriented programming
 - 2.2.6. Threads and inter-process communication

Full-or-part-time: 15 h.

Theory classes: 6 h.

Self study: 9h.

3. High-level digital synthesis

- 3.1. Bit accurate data types
- 3.2. Data flow graph analysis
- 3.3. Resource allocation
- 3.4. Scheduling
- 3.5. Loop unrolling

Full-or-part-time: 12 h.

Theory classes: 6 h.

Self study: 9h.

4. Hardware/software interfaces

- 4.1. Principles of hardware/software communication
- 4.2. On-chip buses
- 4.3. Microprocessor interfaces
- 4.4. Hardware interfaces

Full-or-part-time: 22 h.

Theory classes: 2h.

Self study: 20 h.

5. Design of custom processing subsystems

- 5.1. Video subsystems
- 5.2. Vector and matrix multiplication
- 5.3. Sorting algorithms

Full-or-part-time: 22 h.

Theory classes: 2h.

Self study: 20 h.

Laboratory:

- Configuration of a 32-bit microprocessor IP on an FPGA
- Design of custom communication and information processing subsystems
- Co-simulation and system integration

Full-or-part-time: 39 h.

Laboratory classes: 13 h.

Self study: 26 h.

GRADING SYSTEM

- Final exam: 40 %
- Collective works: 20 %
- Laboratory sessions: 40 %

BIBLIOGRAPHY

Basic:

- Patrick R. Schaumont, “A Practical introduction to Hardware/software Codesign”, 2nd. Edition, Springer, 2013.
- Michael Fingeroff, “High-Level Synthesis Blue Book”, Xlibris US, 2010.

- Ryan Kastner, Janarbek Matai, Stephen Neuendorfer, "Parallel Programming for FPGAs", open-source book, <https://kastner.ucsd.edu/hlsbook/>, 2018.

Complementary:

- T. Grötker, S. Liao, G. Martin, S. Swan, "System Design with SystemC", Kluwer Academic Publishers, 2002.
- S. Sutherland, S. Davidmann, P. Flake, "SystemVerilog for Design. A Guide to Using SystemVerilog for Design and Modeling", 2nd edition, Kluwer Academic Publishers, 2006.